System matrix computation for iterative reconstruction algorithms in SPECT based on direct measurements
نویسندگان
چکیده
A method for system matrix calculation in the case of iterative reconstruction algorithms in SPECT was implemented and tested. Due to a complex mathematical description of the geometry of the detector set-up, we developed a method for system matrix computation that is based on direct measurements of the detector response. In this approach, the influence of the acquisition equipment on the image formation is measured directly. The objective was to obtain the best quality of reconstructed images with respect to specified measures. This is indispensable in order to be able to perform reliable quantitative analysis of SPECT images. It is also especially important in non-hybrid gamma cameras, where not all physical processes that disturb image acquisition can be easily corrected. Two experiments with an I point source placed at different distances from the detector plane were performed allowing the detector response to be acquired as a function of the point source distance. An analytical Gaussian function was fitted to the acquired data in both the oneand the two-dimensional case. A cylindrical phantom filled with a water solution of I containing a region of “cold” spheres as well as a uniform solution (without any spheres) was used to perform algorithm evaluation. The reconstructed images obtained by using four different of methods system matrix computation were compared with those achieved using reconstruction software implemented in the gamma camera. The contrast of the spheres and uniformity were compared for each reconstruction result and also with the ranges of those values formulated by the AAPM (American Association of Physicists in Medicine). The results show that the implementation of the OSEM (Ordered Subsets Expectation Maximization) algorithm with a one-dimensional fit to the Gaussian CDR (Collimator-Detector Response) function provides the best results in terms of adopted measures. However, the fit of the two-dimensional function also gives satisfactory results. Furthermore, the CDR function has the potential to be applied to a fully 3D OSEM implementation. The lack of the CDR in system matrix calculation results in a very noisy image that cannot be used for diagnostic purposes.
منابع مشابه
Fast iterative reconstruction for helical pinhole SPECT imaging.
Pinhole SPECT for small animal has become a routine procedure in many applications of molecular biology and pharmaceutical development. There is an increasing demand in the whole body imaging of lab animals. A simple and direct solution is to scan the object along a helical trajectory, similar to a helical CT scan. The corresponding acquisition time can be greatly reduced, while the over-lappin...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملA model based, anatomy dependent method for ultra-fast creation of primary SPECT projections
Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...
متن کاملEvaluation of the role of system matrix in SPECT images reconstructed by OSEM technique
Introduction: Ordered subset expectation maximization (OSEM), is an effective iterative method for SPECT image reconstruction. The aim of this study is the evaluation of the role of system matrix in OSEM image reconstruction method using four different physical beam radiation models with three detection configurations. Methods: SPECT was done with an arc of 180 deg...
متن کاملImpact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method
Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 21 شماره
صفحات -
تاریخ انتشار 2011